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Cl-Extended Oscillator Algebras and Some of Their
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Cl-extended oscillator algebras generalizing the Calogero–Vasiliev algebra,
where Cl is the cyclic group of order l, are studied both from mathematical and
applied viewpoints. Casimir operators of the algebras are obtained and used to
provide a complete classification of their unitary irreducible representations under
the assumption that the number operator spectrum is nondegenerate. Deformed
algebras admitting Casimir operators analogous to those of their undeformed
counterparts are looked for, yielding three new algebraic structures. One of them
includes the Brzeziński et al. deformation of the Calogero–Vasiliev algebra as a
special case. In its bosonic Fock-space representation, the realization of Cl-
extended oscillator algebras as generalized deformed oscillator ones is shown to
provide a bosonization of several variants of supersymmetric quantum mechanics:
parasupersymmetric quantum mechanics of order p 5 l 2 1 for any l, as well
as pseudosupersymmetric and orthosupersymmetric quantum mechanics of order
two for l 5 3.

1. INTRODUCTION

The oscillator algebra of creation, annihilation, and number operators
plays a central role in the investigation of many physical systems and provides
a useful tool in the theory of Lie algebra representations. Similarly, some of
its deformations (or extensions) have found applications to various physical
problems, such as the description of systems with nonstandard statistics
(Greenberg, 1990, 1991; Fivel, 1990; Meljanac et al., 1994; Meljanac and
Mileković, 1996; Quesne, 1994a), the construction of integrable lattice models
(Bogoliubov et al., 1994), the investigation of nonlinearities in quantum
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optics (McDermott and Solomon, 1994; Solomon, 1998; Man’ko et al., 1997),
the bosonization of supersymmetric quantum mechanics (SSQM) (Bonatsos
and Daskaloyannis, 1993a; Brzeziński et al., 1993; Plyushchay, 1996a, b;
Beckers et al., 1997), as well as the algebraic treatment of quantum exactly
solvable models (Daskaloyannis, 1992; Bonatsos and Daskaloyannis, 1993b;
Bonatsos et al., 1993, 1994; Quesne, 1994b), n-particle integrable systems
(Vasiliev, 1991; Polychronakos, 1992; Brink et al., 1992; Brink and Vasiliev,
1993; Quesne, 1995), pairing correlations in nuclei (Bonatsos, 1992; Bonatsos
and Daskaloyannis, 1992a), and vibrational spectra of molecules (Chang et
al., 1991; Chang and Yan, 1991a–c; Bonatsos and Daskaloyannis, 1992b,
1993c). In addition, they have been used to construct representations of
quantum universal enveloping algebras of Lie algebras, also referred to as
quantum algebras (Biedenharn, 1989; Macfarlane, 1989; Sun and Fu, 1989;
Hayashi, 1990; Fairlie and Zachos, 1991; Fairlie and Nuyts, 1994).

Deformations of the oscillator algebra arose from successive generaliza-
tions of the Arik-Coon (Arik and Coon, 1976; Kuryshkin, 1980) and Bieden-
harn–Macfarlane (Biedenharn, 1989; Macfarlane, 1989; Sun and Fu, 1989)
q-oscillators. Various attempts have been made to introduce some order in
the rich and varied choice of deformed commutation relations by defining
‘generalized deformed oscillator algebras’ (GDOAs). Among them, one may
quote the treatments due to Jannussis et al. (1991), Jannussis (1993), Daska-
loyannis (1991), Bonatsos and Daskaloyannis (1993a), Irac-Astaud and
Rideau (1992, 1993, 1994), McDermott and Solomon (1994), Meljanac et
al. (1994), Meljanac and Mileković (1996), Katriel and Quesne (1996), and
Quesne and Vansteenkiste (1995, 1996, 1997). In the remainder of the present
paper, we shall refer to GDOAs as defined in the last references.

The G-extended oscillator (or alternatively Heisenberg3) algebras, where
G is some finite group, appeared in connection with n-particle integrable
models. It was shown (Vasiliev, 1991; Polychronakos, 1992; Brink et al.,
1992; Brink and Vasiliev, 1993; Quesne, 1995) that they provide an algebraic
formulation of the Calogero model (Calogero, 1969a, b, 1971), or some
generalization thereof (Wolfes, 1974; Calogero and Marchioro, 1974). In the
former case, G is the symmetric group Sn (Polychronakos, 1992; Brink et
al., 1992; Brink and Vasiliev, 1993). For two particles, the Abelian group S2

can be realized in terms of Klein operator K 5 (21)N, where N denotes the
number operator. The S2-extended oscillator algebra then becomes a GDOA,
also known as the Calogero–Vasiliev (Vasiliev, 1991) or modified (Brzeziński
et al., 1993) oscillator algebra. Some deformations of the latter have been

3 In both the oscillator and Heisenberg algebras, the creation and annihilation operators a†, a
are considered as generators, but in the former the number operator N appears as an additional
independent generator, whereas in the latter it is defined in terms of a†, a as N [ a†a.
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extensively studied (Brzeziński et al., 1993; Macfarlane, 1994; Kosiński et
al., 1997; Tsohantjis et al., 1997; Paolucci and Tsohantjis, 1997).

The purpose of the present paper is to study a new class of G-extended
oscillator algebras (Quesne and Vansteenkiste, 1998), generalizing the one
describing the two-particle Calogero model. Here G is the cyclic group of
order l, Cl 5 {I, T, T 2, . . . , Tl21}, which for l 5 2 is isomorphic to S2.
Such Cl-extended oscillator algebras !(l)

a0a1...al22 have a rich structure, since
they depend upon l 2 1 independent real parameters a0, a1, . . . , al22

(reducing to a single one in the l 5 2 case, corresponding to the S2-extended
oscillator algebra). Realizing T in terms of the number operator N converts
!(l)

a0a1...al22 into a GDOA !(l)(G(N )).
The bosonic oscillator Hamiltonian H0 associated with !(l)(G(N )) is

equivalent to the two-particle Calogero Hamiltonian for l 5 2, but exhibits
entirely new features for l $ 3 (Quesne and Vansteenkiste, 1998). In such
a case, all the levels corresponding to a number of quanta equal to m mod
l are equally spaced, but the ordering and spacing of levels associated with
different m values depend on the algebra parameters a0, a1, . . . , al22. By
appropriately choosing the latter, one may therefore obtain nondegenerate
spectra, as well as spectra exhibiting some (n 1 1)-fold degeneracies, where
n may take any value in the set {1, 2, . . . , l 2 1}.

The rich variety of spectra that may be obtained with H0, as well as the
connection with the Calogero model for l 5 2, makes it most likely that
some interesting applications will arise in one or another context. To help
toward finding them, the construction of realizations of the !(l)(G(N )) genera-
tors in terms of differential operators is under current investigation and will
be reported elsewhere.

We may already note, however, that spectra that are a strictly equidistant
continuation of a triplet of ‘ground’ states (which can be obtained here for
l 5 3) arose in two studies of a class of potentials (with applications in
string theory) using either an advanced factorization method (Veselov and
Shabat, 1993) or a nonlinear generalization of the Fock method (Eleonsky
et al., 1994, 1995; Eleonsky and Korolev, 1995). Such spectra can also be
obtained in SSQM by using cyclic shape-invariant potentials of period three
(Sukhatme et al., 1997). In this context, we recently showed that three
appropriately chosen !(3)(G(N )) algebras provide a matrix realization of
SSQM (Quesne and Vansteenkiste, 1999).

Another field wherein Cl-extended oscillator algebras and their deforma-
tions may be of interest is the study of coherent (or squeezed) states in
nonlinear quantum optics, wherein nonlinear oscillators are known to play
an important role (McDermott and Solomon, 1994; Solomon, 1998; Man’ko
et al., 1997).
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In the present paper, apart from studying some mathematical properties
of Cl-extended oscillator algebras, we deal with some important conceptual
applications of these algebras. We indeed plan to show that they provide a
bosonization (i.e., a realization in terms of only boson-like operators without
fermion-like ones) of several variants of SSQM, namely parasupersymmetric
quantum mechanics (PSSQM) of arbitrary order p (Rubakov and Spiridonov,
1988; Khare, 1992, 1993), pseudoSSQM (Beckers et al., 1995a, b; Beckers
and Debergh, 1995a, b), and orthosupersymmetric quantum mechanics
(OSSQM) of order two (Khare et al., 1993a). These results generalize that
previously obtained for standard SSQM in terms of the Calogero–Vasiliev
algebra (Brzeziński et al., 1993; Plyushchay, 1996a, b).

In Section 2, we review the definition of Cl-extended oscillator algebras,
give their Casimir operators, and present some of their realizations. In Section
3, we classify their unitary irreducible representations (unirreps). In Sections
4–6, we consider their applications to PSSQM of arbitrary order p, pseu-
doSSQM, and OSSQM of order two, respectively. In Section 7, we construct
some of their deformations. Finally, Section 8 contains the conclusion.

2. Cl-EXTENDED OSCILLATOR ALGEBRAS

A Cl-extended oscillator algebra !(l), where l may take any value in
the set {2, 3, 4, . . .}, is defined (Quesne and Vansteenkiste, 1998) as an
algebra generated by the operators I, a†, a 5 (a† )†, N 5 N†, and T 5 (T† )21,
satisfying the relations

[N, a†] 5 a†, [N, T ] 5 0, Tl 5 I (2.1)

[a, a†] 5 I 1 o
l21

m51
kmTm, a†T 5 e2i2p/lTa† (2.2)

together with their Hermitian conjugates. Here km, m 5 1, 2, . . . , l 2 1,
are some complex parameters restricted by the conditions k*m 5 kl2m (so that
there remain altogether l 2 1 independent real parameters), and T is the
generator of the cyclic group of order l, Cl 5 {I, T, T 2, . . . , Tl21} (or,
more precisely, the generator of a unitary representation thereof).

It is well known (Cornwell, 1984) that Cl has l inequivalent, one-
dimensional matrix unirreps Gm, m 5 0, 1, . . . , l 2 1, which are such that
Gm (Tn) 5 exp(i2pmn/l) for any n 5 0, 1, . . . , l 2 1. The projection operator
on the carrier space of Gm may be written as

Pm 5
1
l o

l21

n50
(Gm(T n))*T n 5

1
l o

l21

n50
e2i2pmn/lT n (2.3)

and conversely T n, n 5 0, 1, . . . , l 2 1, may be expressed in terms of the
Pm as
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T n 5 o
l21

m50
ei2pmn/lPm (2.4)

The algebra defining relations (2.1) and (2.2) may therefore be rewritten
in terms of I, a†, a, N, and Pm 5 Pm

†, m 5 0, 1, . . . , l 2 1, as

[N, a†] 5 a†, [N, Pm] 5 0, a†Pm 5 Pm11a† (2.5)

o
l21

m50
Pm 5 I, PmPn 5 dm,nPm (2.6)

[a, a†] 5 I 1 o
l21

m50
amPm (2.7)

where we use the convention Pm8 5 Pm if m8 2 m 5 0 mod l (and similarly
for other operators or parameters labeled by m, m8). Equations (2.5)–(2.7)
depend upon l real parameters am, m 5 0, 1, . . . , l 2 1, defined in terms
of the km by

am 5 o
l21

n51
exp(i2pmn/l)kn, m 5 0, 1, . . . , l 2 1 (2.8)

and restricted by the condition

o
l21

m50
am 5 0 (2.9)

Hence, we may eliminate one of them, e.g., al21, and denote the algebra by
!(l)

a0a1...al22. It will, however, often prove convenient to work instead with
the l dependent parameters a0, a1, . . . , al21.

From Eqs. (2.1) and (2.2), or (2.5)–(2.7), it is easy to check that
!(l)

a0a1...al22 admits the following Casimir operators:

#1 5 ei2pN (2.10)

#2 5 e2i2pN/lT 5 o
l21

m50
e2i2p(N2m)/lPm (2.11)

#3 5 N 1 o
l21

m50
bmPm 2 a†a (2.12)

where

bm 5 o
m21

n50
an, m 5 1, 2, . . . , l 2 1 (2.13)

and b0 5 bl 5 0. The first two operators are not functionally independent since
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#1#l
2 5 I (2.14)

From Eq. (2.11), it follows that the cyclic group generator T can be rewritten
in terms of N and #2 as

T 5 ei2pN/l#2 (2.15)

The simplest realization of the cyclic group Cl uses functions of N. By
taking #2 5 I in Eq. (2.15) and using Eq. (2.3), we obtain

T 5 ei2pN/l, Pm 5
1
l o

l21

n50
ei2pn(N2m)/l, m 5 0, 1, . . . , l 2 1 (2.16)

With such a choice, !(l)
a0a1...al22 becomes a GDOA !(l)(G(N )), i.e., an algebra

generated by I, a†, a 5 (a† )†, and N 5 N†, subject to the relations

[N, a†] 5 a†, [a, a†] 5 G(N ) (2.17)

where G(N ) is some Hermitian, analytic function of N (Quesne and Vansteen-
kiste, 1995). In the present case,

G(N ) 5 I 1 o
l21

m50
amPm (2.18)

where Pm is given by Eq. (2.16).
According to the GDOA general theory (see Quesne and Vansteenkiste,

1995, 1996, 1997, and references quoted therein), one may define a structure
function F(N ) which is the solution of the difference equation F(N 1 1) 2
F(N ) 5 G(N ) such that F(0) 5 0. For G(N ) given in Eq. (2.18), one finds

F(N ) 5 N 1 o
l21

m50
bmPm (2.19)

where bm is defined in Eq. (2.13). From Eq. (2.19), it follows that the two
Casimir operators #1, #3 of Eqs. (2.10), (2.12) reduce to the well-known
Casimir operators U 5 exp(i2pN ) and # 5 F(N ) 2 a†a, respectively (Quesne
and Vansteenkiste, 1996, 1997).

It is worth noting that there exist other realizations of Cl which may
be interesting in some physical applications. We mention two of them.

The first one uses functions of spin-s operators, where s 5 (l 2 1)/2.
Denoting as usual the spin operators [generating an su(2) Lie algebra] by Si ,
i 5 1, 2, 3, it is obvious that the operators

Pm 5 &
(l21)/2

s52(l21)/2
sÞ(l22m21)/2

S3 2 s
1–2 (l 2 2m 2 1) 2 s

, m 5 0, 1, . . . , l 2 1 (2.20)

acting in spin space, project on the spin components s 5 (l 2 1)/2, (l 2
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3)/2, . . . , (l 2 2m 21)/2, . . . , 2(l 2 1)/2, respectively. The corresponding
realization of the Cl generator T is obtained from Eq. (2.4) in the form

T 5 o
l21

m50
ei2pm/l1&

l21

n50
nÞm

2S3 2 l 1 2n 1 1
2(n 2 m) 2 (2.21)

By using the (2s 1 1) 3 (2s 1 1) matrix representation of S3, S3 5
diag (s, s 2 1, . . . , 2 s), we get another realization of Cl in terms of l 3
l matrices,

T 5 o
l21

m50
ei2pm/lem11,m11, Pm 5 em11,m11 (2.22)

where eij denotes the l 3 l matrix with 1 in row i and column j, and zeros
everywhere else.

Note that when considering such realizations of Cl, the remaining
!(l)

a0a1...al22 generators would either act in both configuration and spin spaces
or be l 3 l operator-valued matrices.

For l 5 2, the last relation in Eq. (2.1) and those in Eq. (2.2) become

T 2 5 I, {a†, T} 5 0, [a, a†] 5 I 1 k1T 5 I 1 a0(P0 2 P1)

(2.23)

where P0 5 (I 1 T )/2, P1 5 (I 2 T )/2, and k1, a0 P R. In the corresponding
GDOA, the operator T is given by T 5 exp(ipN ), which amounts to Klein
operator K 5 (21)N, since as shown in the next section, the eigenvalues of
N are integer in the !(2) (G(N )) unirreps. In the matrix realization (2.22), T
is represented by the Pauli spin matrix s3, while a†, a can be expressed in
terms of s1, s2, and some differential operators (Bagchi, 1994).

For l 5 3, the counterpart of Eq. (2.23) reads

T 3 5 I, a†T 5 e2i2p/3Ta† (2.24)

[a, a†] 5 I 1 k1T 1 k*1 T 2 5 I 1 a0P0 1 a1P1 2 (a0 1 a1)P2 (2.25)

where P0 5 (I 1 T 1 T 2)/3, P1 5 (I 1 e2i2p/3T 1 e2i4p/3T 2)/3, P2 5 (I 1
e2i4p/3T 1 e2i2p/3T 2)/3, k1 P C, and a0, a1 P R. In the GDOA realization,
the operator T is given by T 5 exp(i2pN/3), so that G(N ) 5 I 1 2(Re k1)
cos(2p N/3) 2 2(Im k1) sin(2p N/3). In the matrix realization (2.22), T is
represented by the matrix diag (1, ei2p/3, ei4p/3). Explicit expressions of a†, a
are still unknown.

In the remainder of this paper, we shall concentrate on the abstract
definition of !(l)

a0a1...al22 or its GDOA realization !(l)(G(N )).
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3. UNIRREPS OF Cl-EXTENDED OSCILLATOR ALGEBRAS

The purpose of the present section is to provide a classification of the
!(l)

a0a1...al22 unirreps. To carry out this program, it proves convenient to first
consider the corresponding GDOA !(l)(G(N )), defined in Eqs. (2.16)–(2.18).

3.1. Unirreps of !(l)(G(N))

As a consequence of Eq. (2.14) and of the assumption #2 5 I, the first
Casimir operator U 5 #1 of !(l)(G(N )) reduces to I; hence the eigenvalues
of N are integer. As usual, we shall restrict ourselves to those unirreps
wherein they are nondegenerate (Rideau, 1992; Quesne and Vansteenkiste,
1996, 1997).4

Let us start with a normalized simultaneous eigenvector .c, n0& of the
Casimir operator # 5 #3, defined in Eq. (2.12), and of the number operator
N, corresponding to the eigenvalues c P R and n0 P Z, respectively. From
Eqs. (2.5)–(2.7), it results that as long as they are nonvanishing, the vectors

.c, n0 1 n) 5 H(a†)n.c, n0&, if n 5 0, 1, . . .
a2n.c, n0&, if n 5 21, 22, . . .

(3.1)

satisfy the relations

#.c, n0 1 n) 5 c.c, n0 1 n), N.c, n0 1 n) 5 (n0 1 n).c, n0 1 n) (3.2)

a†a.c, n0 1 n) 5 ln.c, n0 1 n), aa†.c, n0 1 n) 5 ln11.c, n0 1 n) (3.3)

where

ln 5 F(n0 1 n) 2 c (3.4)

In any unirrep, only nonnegative values of ln are allowed. From Eq.
(2.19), it is clear that the unirrep carrier space 6 is Zl-graded: 6 5 (l21

m50

% 6m, where 6m 5 {.c, n0 1 n) .n0 1 n 5 m mod l}. Hence, we have to
discuss the unitarity conditions ln $ 0 separately in each 6m subspace. Since
the structure function F(N ) is an increasing linear function of N in each Sm,
it is obvious that the algebra has no infinite-dimensional bounded from above
(BFA) nor unbounded (UB) unirreps (Quesne and Vansteenkiste, 1996, 1997).
It therefore only remains to successively consider the cases of infinite-dimen-
sional bounded from below (BFB) unirreps and of finite-dimensional (FD)
ones.

In the case of BFB unirreps, the eigenvalues of N are n0, n0 1 1, n0 1
2, . . . , and the unitarity conditions reduce to

4 In a recent study (Guichardet, 1998), the assumption that the spectrum of N is nondegenerate
was lifted for the Arik–Coon GDOA (Arik and Coon, 1976; Kuryshkin, 1980), but it was
shown that this condition is automatically fulfilled.
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l0 5 0, ln . 0, if n 5 1, 2, . . . , l 2 1 (3.5)

The first condition in Eq. (3.5) fixes the Casimir operator eigenvalue,

c 5 n0 1 bm0 (3.6)

where m0 P {0, 1, . . . , l 2 1} is defined by

n0 5 m0 mod l (3.7)

while the second condition yields some restrictions on the algebra parameters,

bn 2 bm0 1 1 . 0, if n 5 0, 1, . . . , m0 2 1 (3.8)

bn 2 bm0 . 0, if n 5 m0 1 1, m0 1 2, . . . , l 2 1 (3.9)

where

bm 5
bm 1 m

l
(3.10)

In terms of the am, Eqs. (3.6), (3.8), and (3.9) can be rewritten as

c 5 n0 1 o
m021

n50
an (3.11)

and

an , l 2 m0 1 n 2 o
m021

r5n11
ar, if n 5 0, 1, . . . , m0 2 1 (3.12)

an . m0 2 n 2 1 2 o
n21

r5m0

ar, if n 5 m0, m0 1 1, . . . , l 2 2 (3.13)

respectively.
Whenever the unitarity conditions are satisfied, normalized basis states

of 6 can be constructed from the vectors (3.1), and are given by

.c, n0 1 n& 5 [1n(c, n0)]21/2.c, n0 1 n), n 5 0, 1, 2, . . . (3.14)

where the normalization coefficient is

1n(c, n0) 5 &
n

i51
li 5 &

n

i51
[F(n0 1 i) 2 c] (3.15)

By writing n as n 5 kl 1 m, where m P {0, 1, . . . , l 2 1}, and k P N,
1n(c, n0) can be expressed in terms of gamma functions as
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1kl1m(c, n0) 5 lkl1m1 &
m01m

n50
G(bn 2 bm0 1 k 1 1)2

3 1 &
l21

n5m01m11
G(bn 2 bm0 1 k)2

3 1&
m0

n50
G(bn 2 bm0 1 1)2

21

1 &
l21

n5m011
G(bn 2 bm0)2

21

if m 5 0, 1, . . . , l 2 m0 2 1

5 lkl1m1 &
m01m2l

n50
G(bn 2 bm0 1 k 1 2)2

3 1 &
l21

n5m01m2l11
G(bn 2 bm0 1 k 1 1)2

3 1&
m0

n50
G(bn 2 bm0 1 1)2

21

1 &
l21

n5m011
G(bn 2 bm0)2

21

if m 5 l 2 m0, l 2 m0 1 1, . . . , l 2 1 (3.16)

In the case of FD unirreps, the eigenvalues of N are n0, n0 1 1, . . . ,
n0 1 d 2 1, where the dimension d may only take values in the set {1, 2,
. . . , l 2 1}. The unitarity conditions are then given by

l0 5 0, ln . 0 if n 5 1, 2, . . . , d 2 1, ld 5 0 (3.17)

Defining m0 and bm as before by Eqs. (3.7) and (3.10), respectively, we obtain

c 5 n0 1 bm0 (3.18)

bn 2 bm0 . 0 if n 5 m0 1 1, m0 1 2, . . . , m0 1 d 2 1 (3.19)

bm01d 2 bm0 5 0 (3.20)

for m0 5 0, 1, . . . , l 2 d 2 1, and

c 5 n0 1 d 1 bm02l1d (3.21)

bn 2 bm02l1d . 0 if n 5 0, 1, . . . , m0 2 l 1 d 2 1 (3.22)

bn 2 bm0 . 0 if n 5 m0 1 1, m0 1 2, . . . , l 2 1 (3.23)

bm02l1d 2 bm0 1 1 5 0 (3.24)
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for m0 5 l 2 d, l 2 d 1 1, . . . , l 2 1. In terms of the algebra parameters
am, Eqs. (3.18)–(3.20), and Eqs. (3.21)–(3.24) become

c 5 n0 1 o
m021

n50
an (3.25)

an . m0 2 n 2 1 2 o
n21

r5m0

ar

if n 5 m0, m0 1 1, . . . , m0 1 d 2 2 (3.26)

am01d21 5 2d 2 o
m01d22

r5m0

ar (3.27)

for m0 5 0, 1, . . . , l 2 d 2 1, and

c 5 n0 1 d 1 o
m02l1d21

n50
an (3.28)

an , l 2 m0 1 n 2 d 2 o
m02l1d21

r5n11
ar

if n 5 0, 1, . . . , m0 2 l 1 d 2 1 (3.29)

an . m0 2 n 2 1 2 o
n21

r5m0

ar if n 5 m0, m0 1 1, . . . , l 2 2 (3.30)

am021 5 d 2 o
m022

r5m02l1d
ar (3.31)

for m0 5 l 2 d, l 2 d 1 1, . . . , l 2 1, respectively.
Normalized basis states of the carrier space 6 of a d-dimensional unirrep

are given by Eqs. (3.14) and (3.15), where n now runs over the range n 5
0, 1, . . . , d 2 1. The corresponding normalization coefficient 1n(c, n0) can
be rewritten as

1n(c, n0) 5 ln &
m01n

n5m011
(bn 2 bm0) (3.32)

for m0 5 0, 1, . . . , l 2 d 2 1, and

1n(c, n0) 5 ln &
m01n

n5m011
(bn 2 bm02l1d 2 1)

if n 5 1, 2, . . . , l 2 m0 2 1
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Table I. Classification of !(2)(G(N )) Unirrepsa

Type n0 c Condition

BFB 2k0 n0 a0 . 21
BFB 2k0 1 1 n0 1 a0 a0 , 1
FD (d 5 1) 2k0 n0 a0 5 21
FD (d 5 1) 2k0 1 1 n0 1 1 a0 5 1

a Here k0 may take any integer value.

5 ln1 &
m01n2l

n50
(bn 2 bm02l1d)21 &

l21

n5m011
(bn 2 bm02l1d 2 1)2

if n 5 l 2 m0, l 2 m0 1 1, . . . , d 2 1 (3.33)

for m0 5 l 2 d, l 2 d 1 1, . . . , l 2 1.
Tables I–III give the detailed unirrep classification for l 5 2, l 5 3,

and l 5 4, respectively.
Of special interest in physical applications are the Fock-space unirreps,

characterized by c 5 n0 5 0. Since in this case m0 5 0, such representations
exist whenever the algebra parameters satisfy the conditions

o
n

r50
ar . 2 n 2 1 if n 5 0, 1, . . . , l 2 2 (3.34)

in the BFB case, and

Table II. Classification of !(3)(G(N )) Unirrepsa

Type n0 c Condition

BFB 3k0 n0 a0 . 21, a1 . 22 2 a0

BFB 3k0 1 1 n0 1 a0 a0 , 2, a1 . 21
BFB 3k0 1 2 n0 1 a0 1 a1 a0 , 1 2 a1, a1 , 2
FD (d 5 1) 3k0 n0 a0 5 21
FD (d 5 1) 3k0 1 1 n0 1 a0 a1 5 21
FD (d 5 1) 3k0 1 2 n0 1 1 a1 5 1 2 a0

FD (d 5 2) 3k0 n0 a0 . 21, a1 5 22 2a0

FD (d 5 2) 3k0 1 1 n0 1 2 a0 5 2, a1 . 21
FD (d 5 2) 3k0 1 2 n0 1 a0 1 2 a0 , 21, a1 5 2

a Here k0 may take any integer value.
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Table III. Classification of !(4)(G(N )) Unirrepsa

Type n0 c Condition

BFB 4k0 n0 a0 . 21, a1 . 22 2 a0, a2 . 23 2 a0 2 a1

BFB 4k0 1 1 n0 1 a0 a0 , 3, a1 . 21, a2 . 22 2 a1

BFB 4k0 1 2 n0 1 a0 1 a1 a0 , 2 2 a1, a1 , 3, a2 . 21
BFB 4k0 1 3 n0 1 a0 1 a1 1 a2 a0 , 1 2 a1 2 a2, a1 , 2 2 a2, a2 , 3
FD (d 5 1) 4k0 n0 a0 5 21
FD (d 5 1) 4k0 1 1 n0 1 a0 a1 5 21
FD (d 5 1) 4k0 1 2 n0 1 a0 1 a1 a2 5 21
FD (d 5 1) 4k0 1 3 n0 1 1 a2 5 1 2 a0 2 a1

FD (d 5 2) 4k0 n0 a0 . 21, a1 5 22 2 a0

FD (d 5 2) 4k0 1 1 n0 1 a0 a1 . 21, a2 5 22 2 a1

FD (d 5 2) 4k0 1 2 n0 1 2 a1 5 2 2 a0, a2 . 21
FD (d 5 2) 4k0 1 3 n0 1 a0 1 2 a0 , 21, a2 5 2 2 a1

FD (d 5 3) 4k0 n0 a0 . 21, a1 . 22 2 a0, a2 5 23 2 a0 2 a1

FD (d 5 3) 4k0 1 1 n0 1 3 a0 5 3, a1 . 21, a2 . 22 2a1

FD (d 5 3) 4k0 1 2 n0 1 a0 1 3 a0 , 21, a1 5 3, a2 . 21
FD (d 5 3) 4k0 1 3 n0 1 a0 1 a1 1 3 a0 , 22 2a1, a1 , 21, a2 5 3

a Here k0 may take any integer value.

o
n

r50
ar . 2 n 2 1 if n 5 0, 1, . . . , d 2 2 (3.35)

o
d21

r50
ar 5 2 d (3.36)

in the FD one. The former are of bosonic type. Apart from the trivial one-
dimensional unirrep, the latter are of fermionic or order-p-parafermionic type
according to whether d 5 2 or d 5 p 1 1 $ 3. Note that parafermionic-
type unirreps only appear for l $ 4.

In the bosonic Fock-space representation, it may be interesting to con-
sider a bosonic oscillator Hamiltonian (Quesne and Vansteenkiste, 1998),
defined in appropriate units by

H0 5 1–2 {a, a†} (3.37)

By using Eqs. (2.5)–(2.7), and (2.12), we can rewrite H0 in the equivalent
forms

H0 5 a†a 1
1
2 1I 1 o

l21

m50
amPm2 5 N 1

1
2

I 1 o
l21

m50
gmPm (3.38)

where the parameters gm are defined by
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gm [ 1–2 (bm 1 bm11) 5 H1–2 a0, if m 5 0
(m21

n50 an 1 1–2 am, if m 5 1, 2, . . . , l 2 1

(3.39)

The latter satisfy the relation

o
l21

m50
(21)mgm 5 0 (3.40)

deriving from Eq. (2.9), as well as the inequalities

gm . 21–2 (2m 1 1) if m 5 0, 1, . . . , l 2 2 (3.41)

gl21 . 2 1–2 (l 2 1) (3.42)

coming from conditions (3.34).
The states .n& 5 .kl 1 m&, given by Eq. (3.14) where c 5 n0 5 0 are

the eigenstates of H0, corresponding to the eigenvalues

Ekl1m 5 kl 1 m 1 gm 1 1–2 , k 5 0, 1, 2, . . . , m 5 0, 1, . . . , l 2 1

(3.43)

In each ^m 5 {.kl 1 m&.k 5 0, 1, 2, . . .} subspace of the Zl-graded Fock
space ^ 5(l21

m50 % ^m, the spectrum of H0 is harmonic, but the l infinite
sets of equally spaced energy levels, corresponding to m 5 0, 1, . . . , l 2
1, may be shifted with respect to each other by some amounts depending upon
the algebra parameters a0, a1, . . . , al22, through their linear combinations g0,
g1, . . . , gl21. As a result, one may get nondegenerate spectra, as well as
spectra exhibiting some (n 1 1)-fold degeneracies, where n may take any
value in the set {1, 2, . . . , l 2 1} (Quesne and Vansteenkiste, 1998, 1999).

3.2. Unirreps of !(l)
a0a1...al22

Let us now turn to the general case of !(l)
a0a1...al22, defined in Eqs. (2.1)

and (2.2). Since we do not assume #2 5 I, the eigenvalues of N are no longer
restricted to integer values. It can be shown, however, that they are discrete.
The proof proceeds as in Jordan et al. (1963) and Quesne and Vansteenkiste
(1997), and can be summarized as follows. The Casimir operator #1, defined
in Eq. (2.10), is unitary, so that in any given unirrep its eigenvalue can be
written as exp(i2pn0), where n0 P R. On the other hand, the eigenvalues of
#1 can be determined from those of the Hermitian operator N. The spectral
mapping theorem leads to eigenvalues of #1 of the form exp(i2px), where
x P R are the eigenvalues of N. The equivalence of the two expressions for
the eigenvalues of #1 implies that x 5 n0 1 n, n P Z, in any given unirrep,
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which completes the proof. As in Section 3.1, we shall restrict ourselves to
those unirreps wherein the spectrum of N is not only discrete, but also
nondegenerate.

As in Eq. (3.1), the carrier space of any !(l)
a0a1...al22 unirrep can be

constructed by successive applications of a† or a on a normalized simultaneous
eigenvector .c, g, n0& of N and of the Casimir operators #1, #2, #3 defined
in Eqs. (2.10)–(2.12),

N.c, g, n0& 5 n0.c, g, n0& (3.44)

#1.c, g, n0& 5 ei2pr0.c, g, n0& (3.45)

#2.c, g, n0& 5 ei2p(2r01g)/l.c, g, n0& (3.46)

#3.c, g, n0& 5 c.c, g, n0& (3.47)

Here c, n0 P R, g P {0, 1, . . . , l 2 1}, r0 P [0, 1), is defined by

n0 5 n0 1 r0, n0 P Z (3.48)

and the eigenvalue of #2 is determined from Eq. (2.14).
Let us now introduce some new operators and parameters, defined by

N 8 [ N 2 r0I, a8† [ a†, a8 [ a, T8 [ e2i2pg/lT (3.49)

k8m [ ei2pmg/lkm 5 k8*l2m (3.50)

from which we obtain

P8m [
1
l o

l21

n50
e2i2pmn/lT 8n 5 Pm1g (3.51)

a8m [ o
l21

n51
ei2pmn/lk8n 5 am1g 5 a8*m (3.52)

It is obvious that N 8, a8†, a8, T8 (or P8m) satisfy the defining relations (2.1)
and (2.2) [or (2.5)–(2.7)] of !(l)

a80a81...a8l22, where the primed parameters a8m are
given by Eq. (3.52). The corresponding Casimir operators #81, #82, #83 are
found to be expressible in terms of the old ones #1, #2, #3,

#81 [ ei2pN8 5 e2i2pr0#1 (3.53)

#82 [ e2i2pN8/lT8 5 ei2p(r02g)/l#2 (3.54)

#83 [ N 8 1 o
l21

m50
b8mP8m 2 a8†a8 5 #3 2 (r0 1 bg) I (3.55)

where b8m [ (m21
n50 a8n 5 bm1g 2 bg.
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Hence, the simultaneous eigenvector .c, g, n0& of N, #1, #2, #3 is also
a simultaneous eigenvector of N 8, #81, #82, #83, satisfying the relations

N 8.c, g, n0& 5 n0.c, g, n0& (3.56)

#81.c, g, n0& 5 #82.c, g, n0& 5 .c, g, n0& (3.57)

#83.c, g, n0& 5 c8.c, g, n0& (3.58)

where

c8 5 c 2 r0 2 bg (3.59)

From Section 3.1, it follows that such a state may be identified with the
starting eigenvector .c8, n0& of some unirrep of the GDOA !(l)(G8(N 8)),
where G8(N 8) 5 I 1 (l21

m50 a8mP8m. Since a8† 5 a† and a8 5 a, this correspon-
dence between .c, g, n0& and .c8, n0& extends to the remaining basis states of
the !(l)

a0a1...al22 and !(l)(G8(N 8)) unirreps built on such vectors, respectively.
We conclude that to every BFB (or FD) unirrep of !(l)(G8(N 8)), specified

by some minimal N 8 eigenvalue n0 P Z (and some dimension d ), we may
associate an infinite number of BFB (or FD) unirreps of !(l)

a0a1...al22, character-
ized by minimal N eigenvalues n0 5 n0 1 r0, r0 P [0, 1), as well as #2

eigenvalues exp[i2p(2r0 1 g)/l], g P {0, 1, . . . , l 2 1} (and the same
dimension d ). The eigenvalues of the corresponding Casimir operators
#83 5 #8 and #3 are connected by Eq. (3.59). Furthermore, all the
!(l)

a0a1...al22 unirreps are obtained by this mapping procedure.

4. APPLICATION OF Cl-EXTENDED OSCILLATOR ALGEBRAS
TO PSSQM OF ORDER p 5 l 2 1

PSSQM of order two was introduced by Rubakov and Spiridonov (1988)
as a generalization of SSQM (Witten, 1981), obtained by combining standard
bosons with parafermions of order two (Green, 1953; Ohnuki and Kamefuchi,
1982) instead of standard fermions. Its extension to arbitrary order p, due to
Khare (1992, 1993), is described in terms of parasupercharge operators Q,
Q† and a parasupersymmetric Hamiltonian * satisfying the relations

Qp11 5 0 (with Qp Þ 0) (4.1)

[*, Q] 5 0 (4.2)

QpQ† 1 Qp21Q†Q 1 ??? 1 QQ†Qp21 1 Q†Qp 5 2pQp21* (4.3)

and their Hermitian conjugates.
As shown by Bagchi et al. (1997), PSSQM of order p can be reformulated

in terms of p super (rather than parasuper) charges Qn, n 5 1, 2, . . . , p, all
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of which satisfy Q2
n 5 0 and commute with *. However, unlike in usual

SSQM, * cannot be simply expressed in terms of the p supercharges (except
in a very special case to be reviewed below). More specifically, let us set

Q 5 o
p

n51
snQn (4.4)

where sn are some complex constants, and Qn, n 5 1, 2, . . . , p, are assumed
to satisfy the relations

QnQn8 5 dn8,n11QnQn11 (4.5)

QnQ†
n8 5 dn8,nQnQ†

n (4.6)

Q†
nQn8 5 dn8,nQ†

nQn (4.7)

Then, the operator Q defined in Eq. (4.4) satisfies Eqs. (4.1)–(4.3) if

sn Þ 0, n 5 1, 2, . . . , p (4.8)

[*, Qn] 5 0, n 5 1, 2, . . . , p (4.9)

1&
p21

n51

sn2Q1S 1 1&
p

n52

sn2SQp

5 2p F1&
p21

n51

sn2Q1Q2 ??? Qp21 1 1&
p

n52

sn2Q2Q3 ??? QpG* (4.10)

where

S [ .s1.2Q†
1Q1Q2 ??? Qp21

1 o
p21

n52
.sn.2Q2Q3 ??? QnQ†

nQnQn11 ??? Qp21

1 .sp.2Q2Q3 ??? QpQ†
p (4.11)

In the standard realization of PSSQM related to parafermions of order
p (Khare, 1992, 1993), sn 5 1, and Qn, Q†

n, * are represented by ( p 1 1)
3 ( p 1 1) matrices, whose elements are

(Qn)a,b 5 (P 2 iWb) da,b11 db,p112n (4.12)

(Q†
n)a,b 5 (P 1 iWa) da,p112n db,a11 (4.13)

(*)a,b 5 *a da,b (4.14)
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where a, b 5 1, 2, . . . , p 1 1. Here P 5 2i/x is the momentum operator,
Wn(x), n 5 1, 2, . . . , p, are superpotentials, and

*n 5 1–2 (P2 1 W2
n 2 W8n 1 Cn), n 5 1, 2, . . . , p (4.15)

*p11 5 1–2 (P2 1 W2
p 1 W8p 1 Cp) (4.16)

with Cn P R. The operator-valued matrices (4.12) and (4.13) automatically
satisfy Eqs. (4.5)–(4.7), while Eqs. (4.9) and (4.10) impose the conditions

W 2
n 1 W8n 1 Cn 5 W 2

n11 2 W8n11 1 Cn11, n 5 1, 2, . . . , p 2 1

(4.17)

and

o
p

n51
Cn 5 0 (4.18)

respectively.
For arbitrary Wn satisfying Eqs. (4.17) and (4.18), the spectrum of the

parasupersymmetric Hamiltonian * is ( p 1 1)-fold degenerate at least starting
from the pth excited state onward. The nature of the ground and the first
( p 2 1) excited states depends, however, on the specific form of the Wn. For
the special choice W1 5 W2 5 ??? 5 Wp 5 vx, * becomes the parasupersym-
metric oscillator Hamiltonian, which can be realized in terms of bosons and
parafermions of order p. Its ground state is nondegenerate, and has a negative
energy, while the nth excited state for n 5 1, 2, . . . , p 2 1 is (n 1 1)-
fold degenerate.

We now plan to show that the PSSQM algebra (4.1)–(4.3) can be realized
in terms of the generators of !(l)(G(N )), l 5 p 1 1, in their bosonic Fock-
space representation [then the parameters a0, a1, . . . , al22 satisfy Eq. (3.34)].
This will prove that PSSQM of arbitrary order p can be bosonized, as is the
case for standard SSQM (Brzeziński et al., 1993; Plyushchay, 1996a, b;
Beckers et al., 1997) and PSSQM of order two (Quesne and Vansteen-
kiste, 1998).

In view of the results previously obtained for p 5 2 (Quesne and
Vansteenkiste, 1998), let us take as ansätze for the operators Q and * the
expressions

Q 5 o
p

n51
hm1na†Pm1n (4.19)

* 5 H0 1
1
2 o

p

n50
rnPn (4.20)
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where H0 is the bosonic oscillator Hamiltonian (3.37) associated with the
algebra !(p11)(G(N )), hm1n, n 5 1, 2, . . . , p, are some complex constants,
and rn, n 5 0, 1, . . . , p, some real ones. The purpose of the last term on
the right-hand side of Eq. (4.20) is to make the p 1 1 families of H0 equally
spaced eigenvalues coincide at least starting from the pth excited state onward.
Note that in Eqs. (4.19) and (4.20), m takes some fixed, arbitrary value in
the set {0, 1, . . . , p}. The operators Q, Q†, * and all the quantities to be
considered hereafter depend on this m value, although for simplicity’s sake
we chose not to exhibit such a dependence explicitly by appending a m index
to them.

It is straightforward to see that the operators

Qn 5 a† Pp111m2n, n 5 1, 2, . . . , p (4.21)

satisfy Eqs. (4.5)–(4.7); hence Q, as defined by Eq. (4.19), can be written
in the form (4.4) by setting

sn 5 hp111m2n, n 5 1, 2, . . . , p (4.22)

Equation (4.8) leads to the restriction

hm1n Þ 0, n 5 1, 2, . . . , p (4.23)

After some calculations, one finds that Eqs. (4.9) and (4.10) are equivalent
to the conditions

rm1n 5 2 1 am1n 1 am1n11 1 rm1n11, n 5 1, 2, . . . , p (4.24)

and

o
p

n51
.hm1n.2 5 2p (4.25)

o
p

n52
.hm1n.2 1n 2 1 1 o

n22

r50
am1r122 5 p(1 1 am12 1 rm12) (4.26)

respectively.
Equation (4.24) is a nonhomogeneous system of p linear equations in

( p 1 1) unknowns rm1n, n 5 0, 1, . . . , p. Its solution yields p of them in
terms of the remaining one, e.g., rm, rm11, rm13, . . . , rm1p in terms of rm12:

rm 5 22( p 2 1) 2 am 2 am12 2 2 o
p

r53
am1r 1 rm12

5 22( p 2 1) 2 2gm 1 2gm12 1 rm12 (4.27)

rm11 5 2 1 am11 1 am12 1 rm12 5 2 2 2gm11 1 2gm12 1 rm12 (4.28)
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rm1n 5 22(n 2 2) 2 am12 2 2 o
n21

r53
am1r 2 am1n 1 rm12

5 22(n 2 2) 1 2gm12 2 2gm1n 1 rm12, n 5 3, 4, . . . , p (4.29)

where gm is defined in Eq. (3.39).
Equation (4.25) restricts the range of .hm1n.2, n 5 1, 2, . . . , p, while

Eq. (4.26) fixes the value of rm12 in terms of the latter and the algebra
parameters. We conclude that it is possible to find values of hm1n and rn

in Eqs. (4.19) and (4.20) so that Eqs. (4.1)–(4.3) are satisfied. Choosing,
for instance,

.hm1n.2 5 2, n 5 1, 2, . . . , p (4.30)

we obtain

rm12 5
1
p F( p 2 2)am12 1 2 o

p

n53
( p 2 n 1 1)am1n 1 p( p 2 2)G (4.31)

or

rm12 5
1
p H2[1 2 (21)p] o

m11

n50
(21)m112n gn 2 2[p 2 1 2 (21)p]gm12

1 2o
p22

n53
[1 1 (21)p2n]gm1n 1 4gm1p 1 p( p 2 2)J (4.32)

In going from Eq. (4.31) to Eq. (4.32), we used the inverse of Eq. (3.39),
namely

am 5 H2g0, if m 5 0
4(m21

n50 (21)m2ngn 1 2gm, if m 5 1, 2, . . . , l 2 1 (4.33)

From Eqs. (3.38) and (4.27)–(4.29) it follows that the parasupersymme-
tric Hamiltonian (4.20) can be rewritten as

* 5 N 1
1
2

(2gm12 1 rm12 2 2p 1 3)I

1 o
p

n51
( p 1 1 2 n)Pm1n (4.34)

where rm12 is given by Eq. (4.32). The eigenstates .n& 5 .k( p 1 1) 1 n&, n,
k 5 0, 1, 2, . . . , n 5 0, 1, . . . , p, of H0 are also eigenstates of *, corresponding
to the eigenvalues
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%k(p11)1n 5 k( p 1 1) 1 1–2 (2gm12 1 rm12 1 2m 2 2p 1 3)

if n 5 0, 1, . . . , m (4.35)

%k(p11)1n 5 (k 1 1)( p 1 1) 1 1–2 (2gm12 1 rm12 1 2m 2 2p 1 3)

if n 5 m 1 1, m 1 2, . . . , p (4.36)

All the levels are therefore equally spaced. The ground state, corresponding
to the energy

%0 5 %1 5 ??? 5 %m 5 1–2 (2gm12 1 rm12 1 2m 2 2p 1 3) (4.37)

is (m 1 1)-fold degenerate, whereas the excited states are ( p 1 1)-fold
degenerate. Note that since m may take any value in the set {0, 1, . . . , p},
the ground-state degeneracy may accordingly vary between 1 and p 1 1.
Unbroken (resp. broken) PSSQM corresponds to m 5 0 (resp. m 5 1, 2,
. . . , or p).

To study the sign of the ground-state energy, we have to insert Eq. (4.32)
into Eq. (4.37). The result reads

%0 5 %1 5 ??? 5 %m

5
1
2p F4 o

(m22)/2

n50
g2n11 1 4 o

[p/2]

n5(m12)/2
g2n 1 p(2m 2 p 1 1)G

if m 5 0, 2, . . . , 2[p/2] (4.38)

%0 5 %1 5 ??? 5 %m

5
1
2p F4 o

(m21)/2

n50
g2n 1 4 o

[(p21)/2]

n5(m11)/2
g2n11 1 p(2m 2 p 1 1)G

if m 5 1, 3, . . . , 2[( p 2 1)/2] 1 1 (4.39)

where [a] denotes the largest integer contained in a, and ob
n5a [ 0 if a .

b. From the conditions (3.41) and (3.42) for the existence of the bosonic
Fock-space representation, it follows that

%0 5 %1 5 ??? 5 %m .
1
p

( p 1 1)(m 2 p 1 1)

if m 5 0, 1, . . . , p 2 2 (4.40)

%0 5 %1 5 ??? 5 %m . 0 if m 5 p 2 1, p (4.41)

Since the right-hand side of Eq. (4.40) is negative, for m 5 0, 1, . . . , p 2
2, the ground-state energy may be positive, null, or negative according to
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the values taken by the algebra parameters. We therefore recover a well-
known property of PSSQM of order p $ 2: unlike in SSQM (corresponding
to p 5 1), the energy eigenvalues are not necessarily nonnegative, and there
is no connection between the nonvanishing (resp. vanishing) ground-state
energy and the broken (resp. unbroken) PSSQM.

As noted by Khare et al. (1993b), there is, however, a special case in
the standard PSSQM realization (4.12)–(4.16) wherein this unsatisfactory
situation does not occur, and moreover the parasupersymmetric Hamiltonian
* can be expressed directly in terms of the parasupercharge operators Q,
Q†, in contrast with Eq. (4.3). Whenever all the constants Cn vanish in Eq.
(4.17), one can indeed write * as

* 5 1–2 [(Q†Q 2 QQ†)2 1 Q†Q2Q†]1/2 (4.42)

whose eigenvalues are necessarily nonnegative. Furthermore, its ground-state
energy vanishes (resp. is positive) for unbroken (resp. broken) PSSQM.

Such a special case does have a counterpart in the present bosonic
realization. By introducing Eqs. (4.19) and (4.20) into Eq. (4.42), and taking
Eq. (4.30) into account, it is easy to show that Eq. (4.42) is equivalent to
the following additional conditions:

rm 5 21 2 am, rm11 5 1 1 am11,
(4.43)

rm1n 5 0, n 5 2, 3, . . . , p

am1n 5 21, n 5 2, 3, . . . , p (4.44)

which can be checked to be compatible with the previous ones given in Eqs.
(4.27)–(4.29), and (4.31).

However, the conditions (3.34) for the existence of the bosonic Fock-
space representation are compatible with Eq. (4.44) only for m 5 0 and m 5
p. In the former case, a1 5 p 2 1 2 a0, a2 5 a3 5 ??? 5 ap 5 21, where
a0 . 21, and from Eqs. (4.34) and (4.43),

* 5 N 1 o
p

n51
( p 1 1 2 n)Pn (4.45)

PSSQM is then unbroken, and the ground-state energy vanishes [%0 5 0 in
accordance with Eq. (4.37), since g2 5 p 2 3–2 ]. In the latter case, a1 5 a2 5
??? 5 ap21 5 21, ap 5 p 2 1 2 a0, where a0 . 21, and

* 5 N 1 o
p

n50
(a0 1 1 2 n)Pn (4.46)

PSSQM is then broken, and the ground-state energy %0 5 %1 5 ??? %p 5
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a0 1 1 [in accordance with Eq. (4.37), since gp12 5 g1 5 a0 2 1–2 ] is positive,
the ground state being ( p 1 1)-fold degenerate as all the excited states.

Furthermore, by using conditions (4.43) and (4.44), it can be shown that
* can be rewritten in terms of the supercharges (4.21) as

* 5 Q1Q†
1 1 o

p

n51
Q†

n Qn (4.47)

This result also has its counterpart in the standard PSSQM realization (Bagchi
et al., 1997).

Going back now to the general case corresponding to conditions (4.27)–
(4.31) only, we note that Eq. (4.30), yielding the coefficients in the expansion
of the parasupercharges (4.19), has many solutions. This is not surprising
since Khare did show that in the standard PSSQM realization (4.12)–(4.16),
* has in fact p (and not only one) conserved parasupercharges, as well
as p bosonic constants (Khare, 1992, 1993). In other words, there exist p
independent operators Qr , r 5 1, 2, . . . , p, satisfying with * the set of
equations (4.1)–(4.3), and p other independent operators It , t 5 2, 3, . . . ,
p 1 1, commuting with *, as well as among themselves. The former are
obtained from Eqs. (4.4) and (4.12) by setting sn 5 1 for r 5 1 and sn 5
1 2 2dn,p112r for r 5 2, 3, . . . , p, while the latter are given by (It)a,b 5
da,b(1 2 2da,t), where t 5 2, 3, . . . , p 1 1, and a, b 5 1, 2, . . . , p 1 1.
In addition, for any rk , rk11, . . . , rk1p P {1, 2, . . . , p},

QrkQrk11 ??? Qrk1p 5 0 (4.48)

and for any r P {1, 2, . . . , p}, t P {2, 3, . . . , p 1 1},

[It , Qr] 5 o
p

s51
d s

trQs (4.49)

where ds
tr are some real constants, e.g.,

d 1
21 5 d 2

22 5 0, d 2
21 5 d 1

22 5 22,
(4.50)

d 1
31 5 2d 2

31 5 2d 1
32 5 d 2

32 5 21

for p 5 2. Finally, the Qr satisfy some mixed multilinear relations generalizing
Eq. (4.3), and involving * and the bosonic constants It. For p 5 2, for
instance, there are six such independent relations

I3Q2
sQ†

r 1 QsQ†
rQs 1 I2Q†

rQ2
s 5 4Qr* (4.51)

QrQsQ†
s 1 QsQ†

sQr 1 I2Q†
sQrQs 5 4Qr* (4.52)

I3QsQrQ†
s 1 QrQ†

sQs 1 Q†
sQsQr 5 4Qr* (4.53)

where (r, s) 5 (1, 2), (2, 1).
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It is straightforward to show that the operators Qr and It have also
their counterpart in the present bosonic realization. Let us indeed consider
the operators

Qr 5 !2 o
p

n51
bn

ra†Pm1n, r 5 1, 2, . . . , p (4.54)

It 5 o
p11

n51
bn

t Pm1n, t 5 1, 2, . . . , p 1 1 (4.55)

where

bn
t 5 1 2 2dt,n(1 2 dt,1), t, n 5 1, 2, . . . , p 1 1 (4.56)

The bn
t taking values only in the set {21, 11}, it is clear that each Qr in

Eq. (4.54) satisfies the PSSQM algebra (4.1)–(4.3) with Hamiltonian (4.34).
It is also obvious that I2, I3, . . . , Ip11, as defined by Eq. (4.55), commute
with the same, as well as among themselves, while I1 reduces to the unit
operator. Equation (4.48) directly follows for n 5 p from the relation

QrkQrk11 . . . Qrk1n 5 2(n11)/2(a†)n11 o
p2n

n51
Bn(rk , rk11, . . . , rk1n)Pm1n (4.57)

Bn(rk , rk11, . . . , rk1n) [ &
n

l50
bn1n2l

rk1l (4.58)

which can be proved by induction over n.
Considering now Eq. (4.49), we obtain from Eqs. (4.54) and (4.55)

[It , Qr] 5 !2a† o
p

n51
cn

trPm1n, cn
tr [ (bn11

t 2 bn
t )bn

r (4.59)

By combining this result with the inverse of Eq. (4.54),

!2a†Pm1n 5 o
p

r51
br

nQr (4.60)

br
n [ 1–2 {dn,1[1 1 (2 2 p)dr,1] 1 (1 2 dn,1)(dr,1 2 dn,r)} (4.61)

we get Eq. (4.49) with ds
tr given by

d s
tr 5 o

p

n51
cn

trbs
n (4.62)

For the special cases p 5 2 and p 5 3 considered by Khare (1992, 1993),
this general formula yields the correct results [see, e.g., Eq. (4.50)].
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Finally, for the mixed multilinear relations satisfied by the Qr and It ,
let us consider a general relation of the type

It1Qr1Qr2 . . . QrpQ
†
s 1 It2Qr2Qr3 . . . QrpQ

†
sQr1

1 ??? 1 ItpQrpQ
†
sQr1Qr2 . . . Qrp21

1 Itp11Q
†
sQr1Qr2 . . . Qrp 5 2pQp21

r * (4.63)

where r1, r2, . . . , rp P {1, 2, . . . , p} and t1, t2, . . . , tp11 P {1, 2, . . . , p 1
1}. It is clear that such a relation cannot be valid for any choice of the indices
in the ranges indicated. To find to which choices it applies when definitions
(4.54) and (4.55) are used, let us work out the conditions implied by Eq. (4.63).

After some calculations, one gets

o
p

n51
Dn

k 5 pBk([r]p21), k 5 1, 2 (4.64)

o
p

n52
Dn

k1n 2 1 1 o
n22

r50
am1r122 5

p
2

Bk([r]p21)(1 1 am12 1 rm12),

k 5 1, 2 (4.65)

where [r]p21 means that r is repeated ( p 2 1) times, and

Dn
k [ b p1k21

tn122k Bn(rn122k, rn132k, . . . , rp)bn
sBk(r1, r2, . . . , rn112k) (4.66)

Since Bk([r]p21) and Dn
k take values in the set {11, 21}, Eq. (4.64) is satisfied

if and only if

Dn
k 5 Bk([r]p21), k 5 1, 2, n 5 1, 2, . . . , p (4.67)

Then Eq. (4.65) reduces to Eq. (4.26), where the choice (4.30) has been
made; hence it is automatically fulfilled. We are therefore left with condition
(4.67), where we note that

B1([r]p21) 5 2(dr,1 1 dr,p) 2 1, B2([r]p21) 5 2dr,1 2 1 (4.68)

We conclude that finding all mixed multilinear relations of type (4.63)
amounts to determining all sets of bn

t coefficients satisfying Eqs. (4.66)–(4.68).
Once this has been done, it still remains to eliminate some dependent

relations by taking into account identities such as

Ir11Qr 5 Q1, r 5 2, 3, . . . , p (4.69)

ItQ1 5 Qt21, t 5 3, 4, . . . , p 1 1 (4.70)

Qr1Qr2 . . . QrpQ
†
s 5 ItQr1Qr2 . . . QrpQ

†
s ,
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t 5 1, 2, . . . , p (4.71)

QrkQrk11 . . . QrpQ
†
sQr1Qr2 . . . Qrk21 5 ItQrkQrk11 . . . QrpQ

†
sQr1Qr2 . . .Qrk21

k 5 2, 3, . . . , p,

t 5 1, 2, . . . , p 2 1 (4.72)

Q†
sQr1Qr2 . . . Qrp 5 ItQ†

sQr1Qr2 . . . Qrp,

t 5 1, 2, . . . , p 21, p 1 1 (4.73)

By proceeding in this way for p 5 2, one gets the six relations given
in Eqs. (4.51)–(4.53). The p 5 3 case can be dealt with in a similar way,
giving back the results of Khare (1993).

As a final point, let us note that there exists an alternative approach to
PSSQM of order p, due to Beckers and Debergh (1990), wherein Eq. (4.3)
is replaced by the cubic equation

[Q, [Q†, Q]] 5 2Q* (4.74)

while Eqs. (4.1) and (4.2) remain the same. We proved elsewhere (Quesne
and Vansteenkiste, 1998) that in the p 5 2 case, Beckers–Debergh PSSQM
algebra can only be realized by those !(3)(G(N )) algebras that simultaneously
bosonize Rubakov–Spiridonov–Khare PSSQM algebra. For this reason, we
do not consider here that alternative approach to PSSQM of order p.

5. APPLICATION OF C3-EXTENDED OSCILLATOR ALGEBRAS
TO PSEUDOSSQM

PseudoSSQM was introduced by Beckers et al. (1995a, b) (see also
Beckers and Debergh, 1995a, b) in a study of relativistic vector mesons
interacting with an external constant magnetic field, wherein the reality of
energy eigenvalues was required. In the nonrelativistic limit, their theory
leads to a pseudosupersymmetric oscillator Hamiltonian which can be realized
in terms of bosons and pseudofermions, where the latter are intermediate
between standard fermions and parafermions of order two. It is then possible
to formulate a pseudoSSQM characterized by a pseudosupersymmetric Ham-
iltonian * and pseudosupercharge operators Q, Q†, satisfying the relations

Q2 5 0 (5.1)

[*, Q] 5 0 (5.2)

QQ†Q 5 4c2Q* (5.3)

and their Hermitian conjugates, where c is some real constant. The first two
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relations in Eqs. (5.1), (5.2) are the same as those occurring in SSQM, whereas
the third one in Eq. (5.3) is similar to the multilinear relation valid in PSSQM
of order two. Actually, for c 5 1 or 1/2, it is compatible with Eq. (4.3) or
(4.74), respectively.

We will now show that the pseudoSSQM algebra (5.1)–(5.3) can be
realized in terms of the generators of !(3)(G(N )) in their bosonic Fock-space
representation. For such a purpose, as in the p 5 2 PSSQM case (Quesne
and Vansteenkiste, 1998), we shall start by assuming

Q 5 o
2

n50
(jna 1 hna†)Pn (5.4)

* 5 H0 1
1
2 o

2

n50
rnPn (5.5)

where H0 is the bosonic oscillator Hamiltonian (3.37) associated with
!(3)(G(N )), jn, hn are some complex constants, and rn are some real ones,
to be selected in such a way that Eqs. (5.1)–(5.3) are satisfied.

Inserting the expression of Q given in Eq. (5.4) into the first condition
(5.1), we obtain some restrictions on the parameters jn, hn, leading to two
sets of three independent solutions for Q. The solutions belonging to the first
set are given by

Q 5 (jm12a 1 hm12a†)Pm12 (5.6)

where m takes some fixed, arbitrary value in the set {0, 1, 2}. Those belonging
to the second set can be written as

Q8 5 jm12aPm12 1 hma†Pm (5.7)

and can be obtained from the former by interchanging the roles of Q and Q†

(and changing the m value). They will be omitted here, since Q and Q† play
a symmetrical role in the pseudoSSQM algebra (5.1)–(5.3).

Considering next the second and third conditions in Eqs. (5.2) and (5.3),
with Q given by Eq. (5.6) for some m value and the corresponding * given
by Eq. (5.5), we get the restrictions

jm12(22 1 am 1 rm11 2 rm12) 5 0 (5.8)

hm12(2 2 am11 1 rm 2 rm12) 5 0 (5.9)

and

(.jm12.2 1 .hm12.2)jm12 5 4c2jm12 (5.10)

(.jm12.2 1 .hm12.2) hm12 5 4c2hm12 (5.11)
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jm12[(.jm12.2 1 .hm12.2)(1 1 am11) 1 .hm12.2(1 1 am12)]

5 2c2jm12(3 1 2am11 1 am12 1 rm12) (5.12)

hm12.hm12.2(1 1 am12) 5 2c2hm12(1 1 am12 1 rm12) (5.13)

respectively.
Equations (5.8) and (5.9) have three independent solutions:

jm12 Þ 0, hm12 Þ 0,
(5.14)

rm11 5 2 2 am 1 rm12, rm 5 2 2 1 am11 1 rm12

jm12 Þ 0, hm12 5 0, rm11 5 2 2 am 1 rm12 (5.15)

jm12 5 0, hm12 Þ 0, rm 5 22 1 am11 1 rm12 (5.16)

Since the third solution can be obtained from the second one by substituting
Q† for Q, and changing the m value, we are only left with the first two
solutions (5.14) and (5.15).

Introducing Eq. (5.14) into Eqs. (5.10)–(5.13), we get the additional
conditions

.jm12. 5 !4c2 2 .hm12.2,
(5.17)

rm12 5
1

2c2 (1 1 am12)(.hm12.2 2 2c2)

which define with Eq. (5.14) the first set of solutions of the pseudoSSQM
algebra (5.1)–(5.3). As we can fix the overall, arbitrary phase of Q in such
a way that hm12 is real and positive, we obtain for each m value a two-
parameter family of operators

Q(hm12, w) 5 (hm12a† 1 eiw !4c2 2 h2
m12a)Pm12 (5.18)

*(hm12) 5 N 1 1–2 (2gm12 1 rm12 2 1)I 1 2Pm11 1 Pm12 (5.19)

where 0 , hm12 , 2.c., 0 # w , 2p, and rm12 is given by Eq. (5.17). If
we choose, for instance, hm12 5 !2.c. and w 5 0, we get rm12 5 0, and

Q 5 c!2 (a† 1 a)Pm12 (5.20)

* 5 N 1 1–2 (2gm12 2 1)I 1 2Pm11 1 Pm12 (5.21)

Note that this choice does not change * in any significant way since it only
produces an overall shift of its spectrum.

Introducing now Eq. (5.15) into Eqs. (5.10)–(5.13), we get instead the
additional conditions
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.jm12. 5 2.c., rm12 5 21 2 am12 (5.22)

which define with Eq. (5.15) a second set of solutions of the pseudoSSQM
algebra (5.1)–(5.3). Choosing this time the overall, arbitrary phase of Q in
such a way that jm12 is real and positive, we obtain for each m value a one-
parameter family of operators

Q 5 2.c.aPm12 (5.23)

*(rm) 5 N 1 1–2(2gm12 2 am12)I 1 1–2(1 2 am11 1 am12 1 rm)Pm

1 Pm11 (5.24)

where the parameter rm does change the Hamiltonian spectrum in a signifi-
cant way.

The pseudosupersymmetric Hamiltonian, corresponding to the first solu-
tion (5.20), (5.21), coincides with the p 5 2 parasupersymmetric Hamiltonian
previously obtained (Quesne and Vansteenkiste, 1998), and defined for arbi-
trary p in Eq. (4.34) of the present work (but the respective charges are of
course different). Its spectrum and its ground-state energy are therefore given
by Eqs. (4.35), (4.36), and by Eq. (4.37), respectively.

On the contrary, the pseudosupersymmetric Hamiltonian *(rm), corres-
ponding to the second solution (5.23), (5.24), is new, and its spectrum is
given by

%3k1n 5 3k 1 1–2 (2gm12 2 am12 1 2m 2 2)

if n 5 0, 1, . . . , m 2 1 (5.25)

%3k1m 5 3k 1 1–2 (2gm 1 rm 1 2m 1 1) (5.26)

%3k1n 5 3k 1 1–2 (2gm12 2 am12 1 2m 1 4)

if n 5 m 1 1, m 1 2, . . . , 2 (5.27)

Its levels are therefore equally spaced only if rm 5 (am11 2 am12 1 3) mod
6. If rm is small enough, the ground state is nondegenerate, and its energy is
negative for m 5 1, or may have any sign for m 5 0 or 2. On the contrary,
if rm is large enough, the ground state remains nondegenerate with a vanishing
energy in the former case, while it becomes twofold degenerate with a positive
energy in the latter. For some intermediate rm value, one gets a two- or
threefold-degenerate ground state with a vanishing or positive energy,
respectively.

6. APPLICATION OF C3-EXTENDED OSCILLATOR ALGEBRAS
TO OSSQM OF ORDER TWO

OSSQM of arbitrary order p was developed by Khare et al. (1993a) by
combining standard bosons with orthofermions of order p. The latter had
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been previously introduced by Mishra and Rajasekaran (1991a, b), by replac-
ing Pauli’s exclusion principle by a new, more stringent one. OSSQM is
formulated in terms of an orthosupersymmetric Hamiltonian *, and p orthosu-
percharge operators Qr , Q†

r , r 5 1, 2, . . . , p, satisfying the relations

QrQs 5 0 (6.1)

[*, Qr] 5 0 (6.2)

QrQ†
s 1 dr,s o

p

t51
Q†

t Qt 5 2dr,s* (6.3)

and their Hermitian conjugates, where r and s run over 1, 2, . . . , p.
We plan to show that for p 5 2, the OSSQM algebra (6.1)–(6.3) can

be realized in terms of the generators of !(3)(G(N )) in their bosonic Fock-
space representation. For such a purpose, let us set

Q1 5 o
2

n50
(jna 1 hna†)Pn (6.4)

Q2 5 o
2

n50
(zna 1 rna†)Pn (6.5)

* 5 H0 1
1
2 o

2

n50
rnPn (6.6)

where we now have at our disposal four types of complex constants jn, hn,
zn, rn and one type of real ones rn to adjust in order that Eqs. (6.1)–(6.3)
be satisfied.

Let us first consider Eq. (6.1) for r 5 s 5 1, 2. From the study carried
out in Section 5, we know that for each r in the set {1, 2}, the equation
Q2

r 5 0 admits two different types of solutions, given in Eqs. (5.6) and (5.7),
respectively, and connected by the symmetry Q } Q†. In the present case,
we have to distinguish them, since the OSSQM algebra (6.1)–(6.3) is not
invariant under such a symmetry. Hence, for the couple of orthosupersymmet-
ric charges (Q1, Q2) we get seven types of solutions of Q2

1 5 Q2
2 5 0, namely

Q1 and Q2 may be both of type Q or Q8 with the same or adjacent m values,
or Q1 is of type Q corresponding to a given m value, and Q2 of type Q8
corresponding to m, m 1 1, or m 1 2. Here, we take into account the fact
that the algebra (6.1)–(6.3) is invariant under the exchange Q1 } Q2.

Imposing next Eqs. (6.1) and (6.3) for r Þ s, i.e., Q1Q2 5 Q2Q1 5
Q1Q†

2 5 0, we obtain that those seven cases for (Q1, Q2) actually reduce to
two, given by
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Q1 5 jm12aPm12 1 hma†Pm, Q2 5 zm12aPm12 1 rma†Pm (6.7)

and

Q1 5 jm12aPm12, Q2 5 rma†Pm (6.8)

respectively, where for the first one, we have the additional conditions

jm12z*m12 1 hmr*m 5 0 (jm12, hmÞ0) (6.9)

am11 5 21 (6.10)

Note that the latter is compatible with conditions (3.34) for the existence of
the bosonic Fock-space representation only for m 5 0 and m 5 1.

Equation (6.2) now leads to the same conditions for both choices (6.7)
and (6.8), namely

rm 5 4 1 am11 1 rm12, rm11 5 2 2 am 1 rm12 (6.11)

It only remains to impose Eq. (6.3) for r 5 s 5 1, 2. For the first couple
of operators (Q1, Q2) given in Eqs. (6.7), (6.9), and (6.10), we obtain the
additional restrictions

.jm12.2 1 .hm.2 5 2, .zm12.2 5 .hm.2,
(6.12)

.rm.2 5 .jm12.2, jm12h*m 1 zm12r*m 5 0

and

rm 5 1 1 am, rm11 5 0, rm12 5 21 2 am12 (6.13)

Combining Eqs. (6.9) and (6.12), we get

jm12 5 .jm12.eia, hm 5 !2 2 .jm12.2 eib (6.14)

zm12 5 2!2 2 .jm12.2 ei(a2b1g), rm 5 .jm12. eig (6.15)

where 0 , .jm12. , !2, and 0 # a, b, g , 2p. In addition, we find that
Eqs. (6.10), (6.11), and (6.13) are compatible, and can be combined into
the relations

rm 5 1 1 am, rm11 50, rm12 5 22 1 am, am11 5 21 (6.16)

Choosing the overall, arbitrary phases of Q1 and Q2 in such a way that jm12

and rm are real and positive, and setting b 5 w, we obtain for m 5 0 or 1
a two-parameter family of solutions of Eqs. (6.1)–(6.3),

Q1(jm12, w) 5 jm12aPm12 1 eiw!2 2 j2
m12a†Pm (6.17)

Q2(jm12, w) 5 2e2iw!2 2 j2
m12aPm12 1 jm12a†Pm (6.18)
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* 5 N 1 1–2 (2gm11 2 1) I 1 2Pm 1 Pm11 (6.19)

where 0 , jm12 , !2, 0 # w , 2p, and am11 5 21.
For the second couple of operators (Q1, Q2) given in Eq. (6.8), Eq. (6.3)

with r 5 s 5 1, 2 leads to the conditions

.jm12.2 5 .rm.2 5 2 (6.20)

and to Eqs. (6.10) and (6.13). Hence, with an appropriate choice of phases,
we obtain Eqs. (6.17)–(6.19) with jm12 5 !2. We conclude that the most
general solution of the OSSQM algebra (6.1)–(6.3) that can be written in
the form (6.4)–(6.6) is given by Eqs. (6.17)–(6.19), where m P {0, 1}, 0 ,
jm12 # !2, 0 # w , 2p, and am11 5 21.

The orthosupersymmetric Hamiltonian * in Eq. (6.19) is independent
of the parameters jm12, w. All the levels of its spectrum are equally spaced.
For m 5 0, they are threefold degenerate, since

%3k 5 %3k11 5 %3k12 5 3k 1 1–2 (2g1 1 3) (6.21)

OSSQM is therefore broken, and the ground-state energy

%0 5 %1 5 %2 5 1–2 (2g1 1 3) 5 a0 1 1 (6.22)

is positive. On the contrary, for m 5 1, only the excited states are threefold
degenerate, since

%3(k11) 5 %3k11 5 %3k12 5 3k 1 1–2 (2g2 1 5) (6.23)

OSSQM is then unbroken, and the ground-state energy

%0 5 1–2 (2g2 2 1) 5 21–2 (a2 1 1) (6.24)

vanishes. Such results agree with the general conclusions of Khare et al.
(1993a).

For p values greater than two, the OSSQM algebra (6.1)–(6.3) becomes
rather complicated because the number of equations to be fulfilled increases
considerably. A glance at the 18 independent conditions for p 5 3 led us to
the conclusion that the !(4)(G(N )) algebra is not rich enough to contain
operators satisfying Eqs. (6.1)–(6.3). Contrary to what happens for PSSQM,
for OSSQM the p 5 2 case is therefore not representative of the general one.

7. SOME DEFORMED Cl-EXTENDED OSCILLATOR
ALGEBRAS

The purpose of the present section is to construct some deformations
of the Cl-extended oscillator algebras !(l)

a0a1...al22 subject to the condition
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that they admit three Casimir operators analogous to #1, #2, #3 defined in
Eqs. (2.10)–(2.12).

Let us consider a class of algebras generated by I, a†, a 5 (a† )†, N 5
N†, Pm 5 P†

m, m 5 0, 1, . . . , l 2 1, satisfying the defining relations (2.5)–(2.7)
of !(l)

a0a2...al22 except for the commutator of a and a† in Eq. (2.7), which is
replaced by the quommutator (or q-deformed commutator)

[a, a†]q [ aa† 2 qa†a 5 H(N ) 1 K(N ) o
l21

m50
amPm (7.1)

where q P R+, am P R, and H(N ), K(N ) are some real, analytic functions
of N.

The operators #1, #2 of Eqs. (2.10), (2.11) remain invariants of the new
algebras. We will determine the constraints that the existence of a third
Casimir operator of the type

#̃3 5 q2N1D(N ) 1 E(N ) o
l21

m50
bmPm 2 a†a2 (7.2)

imposes on H(N ) and K(N ), assuming that Eq. (2.9) is the only relation
satisfied by the am. Here bm, m 5 0, 1, . . . , l 2 1, and D(N ), E(N ) are
assumed to be some real constants and some real, analytic functions of N,
respectively. In the case of the undeformed algebras !(l)

a0a1...al22, one has q 5
1, H(N ) 5 K(N ) 5 I, and #̃3 reduces to #3 given in Eq. (2.12), with D(N )
5 N, E(N ) 5 I, and bm defined by Eq. (2.13) in terms of the am.

In the realization (2.16), the deformed algebras defined by Eqs. (2.5),
(2.6), (2.9), and (7.1) reduce to GDOAs !(l)

q (G(N )) with q Þ 1 and G(N )
given by the right-hand side of Eq. (7.1). Then #̃3 reduces to the standard
Casimir operator #̃ of such algebras, and F(N ) 5 D(N ) 1 E(N ) (l21

m50 bmPm

becomes the GDOA structure function, satisfying the equation F(N 1 1)
2 qF(N ) 5 G(N ) (Katriel and Quesne, 1996; Quesne and Vansteenkiste,
1996, 1997).

Going back to the general case, we note that since #̃3 is a Hermitian
operator commuting with N and Pm, we only have to impose the condition
[#̃3, a] 5 0. By using the defining relations, it is easy to show that the latter
is equivalent to the two functional equations

D(N 1 1) 2 qD(N ) 5 H(N ) (7.3)

E(N 1 1)bm11 2 qE(N )bm 5 K(N )am, m 5 0, 1, . . . , l 2 1 (7.4)

where we assume as usual bl 5 b0. Equation (7.3) is similar to the equation
appearing in the construction of #̃ for GDOAs with q Þ 1 (Katriel and
Quesne, 1996; Quesne and Vansteenkiste, 1996, 1997), while Eq. (7.4) is a
new functional equation, whose solutions will now be determined.
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For such a purpose, let us consider the following nonhomogeneous
system of l linear equations in l unknowns bm, m 5 0, 1, . . . , l 2 1,

2qE(x)bm 1 E(x 1 1)bm11 5 K(x)am, m 5 0, 1, . . . , l 2 1 (7.5)

bl [ b0 (7.6)

where x is some real variable.
If the determinant of its coefficient matrix is nonvanishing, i.e., if

[E(x 1 1)]l 2 [qE(x)]l Þ 0 (7.7)

or, equivalently,

E(x) Þ bqx (7.8)

and

E(x) Þ b8(2q)x if l is even (7.9)

where b, b8 are some real, nonvanishing constants, then the system has one
and only one solution, given by

bm 5
[qE(x)]l21K(x)

[E(x 1 1)]l 2 [qE(x)]l o
l21

n50 1
E(x 1 1)

qE(x) 2
n

am1n,

m 5 0, 1, . . . , l 2 1 (7.10)

Since, by definition, bm, m 5 0, 1, . . . , l 2 1, are constants, the functions
E(x) and K(x) should be chosen in such a way that the dependence on x
disappears on the right-hand side of Eq. (7.10).

Let us first consider b0. By using Eq. (2.9) to express a0 in terms of
a1, a2, . . . , al21, we can rewrite b0 as

b0 5
[qE(x)]l21K(x)

[E(x 1 1)]l 2 [qE(x)]l o
l21

n51
F1E(x 1 1)

qE(x) 2
n

2 1Gan (7.11)

Since a1, a2, . . . , al21 are assumed to be independent, the coefficient of
each of them on the right-hand side of Eq. (7.11) should reduce to some real
constant, which we denote by en, n 5 1, 2, . . . , l 2 1. Hence we get the
system of equations

1
e1
1E(x 1 1)

qE(x)
2 12 5

[E(x 1 1)]l 2 [qE(x)]l

[qE(x)]l21K(x)
(7.12)

1
e1
1E(x 1 1)

qE(x)
2 12 5

1
en
F1E(x 1 1)

qE(x) 2
n

2 1G,
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n 5 2, 3, . . . , l 2 1 (7.13)

to determine the constraints on E(x) and K(x).
For l 5 2, we are only left with the first equation (7.12), yielding

the constraint

K(x) 5 e1[E(x 1 1) 1 qE(x)] (7.14)

Introducing the latter into Eq. (7.10) and using Eq. (2.9) again, we obtain

bm 5 2e1am, m 5 0, 1 (7.15)

which are constants, as they should be. Incorporating the constant e1 into the
E(x) definition, we conclude that the algebras defined by Eqs. (2.5), (2.6)
with l 5 2 and

[a, a†]q 5 H(N ) 1 [E(N 1 1) 1 qE(N )](a0P0 1 a1P1) (7.16)

where a0, a1 satisfy Eq. (2.9), H(N ) is arbitrary, and E(N ) Þ (6q)N, admit
the three Casimir operators (2.10), (2.11), and

#̃3 5 q2N[D(N ) 2 E(N )(a0P0 1 a1P1) 2 a†a] (7.17)

where D(N ) is some solution of Eq. (7.3). By choosing that solution for
which D(0) 5 a0E(0), #̃3 vanishes in the bosonic Fock-space representation.

For l . 2, Eq. (7.13) for n 5 2 yields the constraint

E(x 1 1) 5 1e2

e1
2 12 qE(x) (7.18)

whose solution is given by

E(x) 5 bkx (7.19)

where b is some real constant and k [ (e21
1 e2 2 1)q. From Eqs. (7.8) and

(7.9), it follows that for any l, k Þ q, and in addition for even l, k Þ 2q.
Equation (7.12) then provides the expression of K(x),

K(x) 5 Bkx (7.20)

where B [ e1bq22l (kl 2 ql)/(k 2 q), while for the remaining n values, Eq.
(7.13) leads to the conditions

en 5 e1q12n kn 2 qn

k 2 q
, n 5 2, 3, . . . , l 2 1 (7.21)

Hence, from Eq. (7.10), bm is given by
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bm 5
Bql21

b(kl 2 ql) o
l21

n50 1
k
q2

n

am1n, m 5 0, 1, . . . , l 2 1 (7.22)

and therefore reduces to some constant, as it should. We conclude that for
l . 2, the algebras defined by Eqs. (2.5), (2.6), and

[a, a†]q 5 H(N ) 1 BkN o
l21

m50
amPm (7.23)

where H(N ) and B are arbitrary, am satisfies Eq. (2.9), k Þ q for any l, and
k Þ 2q for even l, admit the three Casimir operators (2.10), (2.11), and

#̃3 5 q2N HD(N ) 1
Bql21

kl 2 ql kN o
l21

m50
Fo

l21

n50 1
k
q2

n

am1nG Pm 2 a†aJ (7.24)

where D(N ) is some solution of Eq. (7.3). By choosing that solution for
which D(0) 5 2Bql21(kl 2 ql)21 (l21

n50 (k/q)nan, #̃3 vanishes in the bosonic
Fock-space representation.

It remains to consider the cases where the coefficient matrix of system
(7.5), (7.6) has a vanishing determinant. If E(x) 5 bq x, where b is some real
constant, then Eqs. (7.5) and (7.6) become

2bm 1 bm11 5 (bq)21 K(x)
q x am, m 5 0, 1, . . . , l 2 1 (7.25)

bl [ b0 (7.26)

Since the bm are constants, we obtain

K(x) 5 Bq x (7.27)

where B is some real constant, and therefore

bm 5
B
bq o

m21

n50
an 1 b0, m 5 1, 2, . . . , l 2 1 (7.28)

We conclude that the algebras defined by Eqs. (2.5), (2.6), and

[a, a†]q 5 H(N ) 1 Bq N o
l21

m50
amPm (7.29)

where H(N ) and B are arbitrary, and am satisfies Eq. (2.9), admit the three
Casimir operators (2.10), (2.11), and

#̃3 5 q2NFD(N ) 1 Bq N21 o
l21

m51 1o
m21

n50
an2Pm 2 a†aG (7.30)

where we have set b0 5 0 (thereby eliminating a multiple of the unit operator),
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and D(N ) is some solution of Eq. (7.3). By choosing that solution for which
D(0) 5 0, #̃3 vanishes in the bosonic Fock-space representation.

Finally, if l is even and E(x) 5 b(2q)x, where b is some real constant,
then Eqs. (7.5) and (7.6) become

bm 1 bm11 5 2(bq)21 K(x)
(2q)x am, m 5 0, 1, . . . , l 2 1 (7.31)

bl [ b0 (7.32)

The bm constancy implies again that

K(x) 5 B(2q)x (7.33)

where B is some real constant. Equation (7.31) is then equivalent to

b0 1 b1 5 2
B
bq

a0 (7.34)

bm12 2 bm 5 2
B
bq

(am11 2 am), m 5 0, 1, . . . , l 2 2 (7.35)

The solution of Eqs. (7.34) and (7.35) is given by

bm 5 2
B
bq 1 o

(m22)/2

n50
a2n11 2 o

(m22)/2

n50
a2n2 1 b0, if m is even (7.36)

bm 5 2
B
bq 1 o

(m21)/2

n50
a2n 2 o

(m23)/2

n50
a2n112 2 b0 if m is odd (7.37)

Condition (7.32) is consistent with Eq. (7.36) if and only if we impose that
((l22)/2

n50 a2n11 5 ((l22)/2
n50 a2n, or by taking Eq. (2.9) into account,

((l22)/2
n50 a2n 5 0. Since we have assumed that the am do not satisfy any extra

relation apart from Eq. (2.9), the case E(x) 5 b(2q)x has to be rejected.
We have therefore found three deformed Cl-extended oscillator algebras

admitting three Casimir operators #1, #2, #̃3. They correspond to Eqs. (7.16)
and (7.17), (7.23) and (7.24), and (7.29) and (7.30), respectively.

The deformed Calogero–Vasiliev algebra introduced by Brzeziński et
al. (1993), for which

[a, a†]q 5 q2N(1 1 2aK ), K 5 (21)N (7.38)

is a special case of Eq. (7.16), corresponding to

H(N ) 5 q2N, E(N ) 5
2q2N

q 1 q21 , a0 5 2a1 5 a (7.39)

From Eq. (7.3), we obtain
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D(N ) 5
qN 2 q2N

q 2 q21 1
2aqN

q 1 q21 (7.40)

so that the Casimir operator (7.17) becomes

#̃3 5 q2N 1qN 2 q2N

q 2 q21 1
2a(qN 2 q2N K )

q 1 q21 2 a†a2 (7.41)

In a given unirrep whose basis states are given by Eq. (3.1) and satisfy
relations similar to Eqs. (3.2) and (3.3) with # 5 #3 replaced by #̃3, we
obtain from Eq. (7.41) that ln can be expressed as

ln 5 2qn01nc 1
qn01n 2 q2n02n

q 2 q21 1 2a
qn01n 2 (2q)2n02n

q 1 q21 (7.42)

or

ln 5 qnl0 1 q2n0 1qn 2 q2n

q 2 q21 1 B
qn 2 (2q)2n

q 1 q21 2, B [ 2a(21)n0

(7.43)

This equation is consistent with Eq. (14) of Kosiński et al. (1997), wherein
the representations of the deformed Calogero–Vasiliev algebra were studied.
Note that this result holds although there are some slight discrepancies in
the algebra definition between Kosiński et al. (1997) and the present work,
and the Casimir operator #̃3 was not considered in the former.

Some interesting special cases of the algebras corresponding to Eqs.
(7.23) and (7.29) are obtained for q 5 1, k Þ 1, k Þ 21 (if l is even) and
k 5 1, q Þ 1, q Þ 21 (if l is even) for the former, and q 5 1 for the latter.

8. CONCLUSION

In the present paper, we studied some mathematical properties of Cl-
extended oscillator algebras !(l)

a0a1...al22. We constructed Casimir operators
and used them to provide a complete unirrep classification under the assump-
tion that the number operator spectrum is nondegenerate. We established that
only BFB and FD unirreps occur, and showed that the unirreps of
!(l)

a0a1...al22 can be related to those of its GDOA realization !(l)(G(N )).
In addition, we looked for some deformations of !(l)

a0a1...al22 subject to
the condition that they admit Casimir operators analogous to those of the
undeformed algebras. We found three new types of algebras, defined in Eqs.
(7.16) and (7.17), (7.23) and (7.24), and (7.29) and (7.30), respectively. The
first one includes the Brzeziński et al. (1993) deformation of the Calogero–
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Vasiliev algebra (Vasiliev, 1991; Polychronakos, 1992; Brink et al., 1992;
Brink and Vasiliev, 1993) as a special case.

Furthermore, we established that the bosonic Fock-space realization of
!(l)(G(N )) yields a convenient bosonization of several SSQM variants:
PSSQM of order p 5 l 2 1 for any l, as well as pseudoSSQM, and OSSQM
of order two for l 5 3. In the former case, we provided a full analysis
of the problem, including the construction of the p independent conserved
parasupercharges and p bosonic constants admitted by the parasupersymme-
tric Hamiltonian. Such results generalize those already known for standard
SSQM (Brzeziński et al., 1993; Plyushchay, 1996a, b). In the OSSQM case,
however, it was not possible to extend the results to p values greater than
two in the Cl-extended oscillator algebra context.

There remain some interesting open questions for future study. Apart
from those mentioned in Section 1, we mention two of them here. The
first one is to further study deformations both from theoretical and applied
viewpoints. Generalizing, for instance, the Macfarlane (1994) deformation
of the Calogero–Vasiliev algebra would be an interesting topic. The second
issue is to construct some GDOA whose structure would be rich enough to
enable the OSSQM bosonization to be carried out for p . 2.
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Kosiński, P., Majewski, M., and Maślanka, P. (1997). Journal of Physics A, 30, 3983.
Kuryshkin, V. (1980). Annales de la Fondation Louis de Broglie, 5, 111.
Macfarlane, A. J. (1989). Journal of Physics A, 22, 4581.



Cl-Extended Oscillator Algebra 1215

Macfarlane, A. J. (1994). Journal of Mathematical Physics, 35, 1054.
Man’ko, V. I., Marmo, G., Sudarshan, E. C. G., and Zaccaria, F. (1997). Physica Scripta, 55, 528.
McDermott, R. J., and Solomon, A. I. (1994). Journal of Physics A, 27, L15.
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